
	
	
	
	
	

Enhancement	Proposal	Report	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Team	Name:	Pingu	Simulator	
Members:	Ryan	Mahjour,	Wesley	Knowles,	Zack	Harley,	
David	Wesley-James,	Alisha	Foxall,	Michael	Zadra	
Student	Numbers:	10142829,	10149982,	10135795,	
10104425,	10129909,	10057216	
Due	Date:	December	5,	2017	
TA:	Dayi	Lin	
Instructor:	Ahmed	E.	Hasan	

	 	

Table	of	Contents	

ABSTRACT	..	3	

PROPOSED	FEATURE	AND	MOTIVATION	...	3	

ENHANCEMENT	ARCHITECTURES	..	3	
IMPLEMENTATION	1	–	ABSTRACT	“SUPERTUX”	DESIGN	PATTERN	...	3	
IMPLEMENTATION	2	–	MULTIPLAYER	MANAGER	SUBSYSTEM	...	4	

ARCHITECTURAL	STYLES	AND	DESIGN	PATTERNS	..	5	

SAAM	ANALYSIS	...	6	

EFFECTS	OF	ENHANCEMENT	ON	THE	SYSTEM	...	7	

SEQUENCE	DIAGRAMS	..	8	
STARTING	A	LEVEL	IN	MULTIPLAYER	...	8	
UPDATING	THE	GAME	..	9	

IMPACTED	DIRECTORIES	AND	FILES	..	10	
NEW	FILES	ADDED	TO	THE	SYSTEM	...	10	

PLANS	FOR	TESTING	...	10	
UNIT	TESTING	..	10	
INTEGRATION	TESTING	..	10	
SYSTEM	LEVEL	TESTING	...	10	
REGRESSION	TESTING	..	11	

POTENTIAL	RISKS	..	11	

REFERENCES	...	11	
	
	 	

Abstract	
SuperTux	is	a	free	and	open-source	two-dimensional	platform	game	that	was	released	

in	2003.	The	game	was	inspired	by	Nintendo’s	Super	Mario	Bros.	series.	It	was	originally	created	
by	Bill	Kendrick	and	is	currently	maintained	by	the	SuperTux	Development	Team.	

In	this	report,	we	will	be	discussing	and	analyzing	the	feasibility	of	adding	two-player	
local	multiplayer	to	SuperTux.	We	will	do	this	by	explaining	this	enhancement,	and	performing	
a	SAAM	analysis	for	two	different	methods	of	implementing	it.	The	two	methods	involve	either	
enhancing	the	SuperTux	component	within	Game	Elements,	or	creating	an	entirely	new	
Multiplayer	subsystem.	In	the	end,	we	chose	that	enhancing	the	SuperTux	component	would	be	
preferable,	and	the	reasoning	will	be	discussed	in	detail.	We	will	then	show	how	we	would	
change	the	architecture	itself,	and	the	effects	of	these	changes.	The	architecture	styles	and	
design	patterns	will	be	examined,	and	finally	the	potential	risks	that	exist	from	enhancing	
SuperTux	will	be	discussed.	
	

Proposed	Feature	and	Motivation	
Currently	SuperTux	is	strictly	a	single	player	game,	but	by	adding	2-player	multiplayer	

we	add	in	the	opportunity	for	the	player	to	be	able	to	share	the	game	with	a	friend,	expanding	
the	SuperTux	experience	to	include	social	aspects.	Moreover,	there	is	the	added	benefit	for	
some	less	experienced	players	to	get	a	helping	hand	with	the	tougher	levels	that	they	are	
unable	to	complete	alone.	With	our	proposed	integration	approach,	we	can	easily	scale	the	
number	of	players,	offering	the	potential	for	some	other	game	modes	if	we	see	success	with	2-
player	mode.	One	argument	against	adding	in	2-player	multiplayer	is	that	the	game	was	created	
and	designed	for	one	player.	We	understand	this	and	are	still	giving	the	player	the	option	to	
play	alone	with	no	changes	to	the	gameplay	they	know	and	love.		

Enhancement	Architectures	
In	implementing	local	two-player	multiplayer	for	SuperTux,	two	enhancements	of	the	

conceptual	architecture	are	presented	below.	
	
Implementation	1	–	Abstract	“SuperTux”	Design	Pattern	

Implementation	1	would	manage	two-player	local	multiplayer	through	enhancing	the	
SuperTux	component	within	Game	Elements,	as	seen	in	Figure	1,	to	implement	an	Abstract	
“SuperTux”	Factory	Design	Pattern.	It	would	involve	modifying	the	GUI	component	within	the	
Interaction	Layer	subsystem	to	add	a	“Local	Multiplayer”	option	to	the	menu	elements.	
Furthermore,	the	Control	component	within	the	Input	Handler	subsystem	would	be	modified	to	
be	able	to	handle	another	set	of	input	controls	that	are	decoded	and	mapped	to	a	newly	
instantiated	SuperTux	object.	The	SuperTux	component	within	Game	Elements	implements	an	
Abstract	Factory	Design	Pattern	in	order	to	create	families	of	related	Tux	objects	without	
specifying	their	concrete	classes.	All	the	changed	components	within	the	architecture	are	
highlighted	as	red	in	Figure	1.	

Figure	1	Enhanced	Conceptual	Architecture	for	Implementation	1	

	
Implementation	2	–	Multiplayer	Manager	Subsystem	

Implementation	2	would	manage	two-player	local	multiplayer	through	the	
implementation	of	a	new	Multiplayer	Manager	subsystem,	as	seen	in	Figure	2.	For	this	
implementation,	the	GUI	component	would	be	modified	within	the	Interaction	Layer	subsystem	
to	add	a	“Local	Multiplayer”	option	to	the	menu	elements	just	like	implementation	1.	The	
Control	component	in	Input	Handler	subsystem	would	be	modified	to	be	able	to	handle	1	extra	
set	of	input	controls	that	are	decoded	and	mapped	to	the	2	respective	player	components	
within	the	new	Multiplayer	Manager	subsystem.	The	Multiplayer	Manager	subsystem	
intercepts	user	input	from	the	Input	Handler,	and	tracks	the	behavior	of	each	player’s	
SuperTux.	Thus,	the	SuperTux	component	in	Game	Elements	would	be	modified	to	be	able	to	
handle	2	SuperTux	instances	on	the	map,	reference	the	Multiplayer	subsystem,	and	poll	it	in	
order	to	update	the	two	SuperTux	instances	in	the	game.	

	

Figure	2	Enhanced	Conceptual	Architecture	for	Implementation	2	

The	major	differences	in	interactions	between	implementation	1	and	2,	are	the	fact	that	
implementation	1	only	modifies	existing	components	in	our	conceptual	architecture,	utilizing	
the	already	existing	dependencies	between	the	subsystems	to	operate.	On	the	other	hand,	
implementation	2	requires	the	addition	of	a	new	subsystem,	as	well	as	2	new	dependency	
additions	to	the	subsystems	Game	Elements	and	Input	Handler.	For	both	implementations,	the	
architecture	style	is	not	significantly	changed,	and	maintains	a	hierarchal	structure	as	well	as	
object-oriented	dependencies	and	interactions.	Thus,	it’s	still	considered	a	hybrid	Layered	&	
Object-Oriented	architecture	design.	

The	group	decided	that	implementation	1	is	the	optimal	approach	in	implementing	the	
enhancement,	as	it	would	help	improve	maintainability,	as	well	as	the	cohesion	and	coupling	of	
the	entire	system.	This	is	further	discussed	in	the	SAAM	analysis	of	this	report.	
	

Architectural	Styles	and	Design	Patterns	
Our	proposed	feature	would	require	us	to	enhance	the	Game	Elements	subsystem	and	

add	a	SuperTux	factory.	To	do	this	we	would	utilize	the	Abstract	Factory	design	pattern.	This	
design	pattern	is	very	useful	because	it	provides	an	interface	for	creating	families	of	related	or	

dependent	objects	without	specifying	their	concrete	classes.	This	is	ideal	for	creating	more	than	
one	SuperTux	character	on	the	map.	

Implementing	this	design	pattern	would	not	affect	our	architectural	style	and	it	would	
remain	layered/objected-oriented.	Furthermore,	the	current	implementation	of	SuperTux	
utilizes	the	Abstract	Factory	pattern	in	a	file	titled	object_factory.cpp.	This	shows	that	this	
design	pattern	can	be	easily	implemented	within	the	system.	It	also	allows	the	team	creating	
the	multiplayer	feature	to	base	their	work	of	the	working	abstract	factory	implemented	within	
SuperTux.	
	

SAAM	Analysis	
	
Table	1:	SAAM	Analysis	for	both	implementations	

Stakeholder	
(NFR)	 SuperTux	Factory	 Multiplayer	Subsystem	

Developer	
(Scalability)	

High.	With	an	abstract	SuperTux	
factory,	scaling	the	multiplayer	
capacity	is	as	easy	as	calling	the	
SuperTux	factory.	This	means	that	we	
can	scale	up	the	multiplayer	
capabilities	to	as	many	players	as	the	
host	computer	can	handle.	The	only	
real	limitation	of	the	scalability	of	this	
implementation	is	the	capabilities	of	
the	hardware	on	the	PC	running	
SuperTux.	

Low.	With	a	dedicated	Multiplayer	
Subsystem,	there	is	a	component	for	
each	player.	This	means	that	scaling	
the	system	means	creating	a	new	
multiplayer	component	for	the	new	
player.	This	adds	a	lot	of	overhead	
and	increases	the	difficulty	of	scaling	
the	system.	

Developer	
(Evolvability)	

High.	Changes	to	the	SuperTux	factory	
affect	all	SuperTux	instances.	Because	
SuperTux	instances	are	created	from	
the	factory,	new	versions	of	the	game	
would	use	the	updated	SuperTux	
factory	meaning	that	all	players	will	
have	the	same	changes	from	the	
update.	

Low.		Changes	to	each	player	need	
to	be	implemented	individually.	In	
other	words,	changes	to	player	one	
need	to	be	separately	implemented	
for	player	two.	Assuming	consistent	
time	to	implement	features	for	each	
player,	this	approach	increases	
development	time	proportional	to	
the	number	of	players	supported	
(i.e.	2	players,	2x	dev	time).	

Player	
(Usability)	

High.	Multiplayer	is	enabled	and	can	
be	played	by	two	users.	The	main	goal	
of	this	feature	is	to	allow	two	players	
to	play	on	the	screen	at	the	same	
time.	This	approach	accomplishes	
that.	

High.	Multiplayer	is	enabled	and	can	
be	played	by	two	users.	The	main	
goal	of	this	feature	is	to	allow	two	
players	to	play	on	the	screen	at	the	
same	time.	This	approach	
accomplishes	that.	

	

	

Effects	of	Enhancement	on	the	System	
The	chosen	abstract	SuperTux	factory	implementation	will	affect	the	maintainability,	

evolvability,	testability,	and	performance	of	the	system.	The	maintainability	of	the	system	is	
arguably	decreased	with	the	implementation	of	multiplayer.	Anytime	code	is	added	to	the	
codebase	(and	none	is	removed)	it	can	be	said	that	maintainability	is	decreased.	When	looking	
at	maintainability	from	a	developer’s	perspective,	it	is	important	to	weigh	the	value	added	by	
the	feature	vs	the	time	cost	of	maintaining	it.	

As	discussed	in	the	SAAM	Analysis,	the	SuperTux	factory	allows	all	changes	to	the	
SuperTux	factory	to	be	reflected	in	all	instances	of	SuperTux	that	it	derives.	This	means	that	
changes	to	any	player	are	reflected	for	all	players	in	multiplayer,	meaning	this	implementation	
allows	for	high	levels	of	evolvability.	

To	be	able	to	properly	test	this	implementation	of	multiplayer,	we	will	utilize	unit	
testing	at	the	code	level,	integration	testing	at	the	subsystem	level,	system	level	testing	for	
ensuring	that	all	subsystems	interact	properly,	and	regression	testing	to	avoid	re-implementing	
previously	encountered	bugs	and	errors.	This	will	allow	us	to	ensure	that	we	maintain	the	
functionality	of	the	newly	written	code	when	fixing	bugs	or	adding	features	to	the	rest	of	the	
system.	The	implementation	of	these	types	of	testing	will	increase	the	overall	testability	of	the	
project	as	SuperTux	currently	has	not	testing	framework.	

Lastly,	performance	of	the	system	could	be	negatively	affected	by	the	new	multiplayer	
feature.	This	is	mainly	due	to	increasingly	concurrent	nature	of	the	multiplayer	feature	set.	
When	running	multiplayer,	you	must	calculate	the	positioning	of	each	player’s	Tux	and	rerender	
it	on	the	screen.	This	increased	processing	could	negatively	affect	the	performance	of	the	
system.	
	 	

Sequence	Diagrams	
Starting	a	Level	in	Multiplayer	
	

	
Figure	3:	Sequence	diagram	for	starting	a	level	in	multiplayer	

	
Figure	3	shows	the	sequence	of	operations	performed	when	a	level	is	started	in	

multiplayer	mode.	It	is	very	similar	to	the	flow	of	single	player	mode,	since	the	changes	are	
mostly	limited	to	the	Supertux	subsystem.	In	this	case,	the	change	is	seen	in	the	Sector	object,	
as	that	is	the	one	that	keeps	track	of	the	game	objects.	In	multiplayer	mode,	the	Sector	has	two	
factories	–	one	for	MainPlayers	and	one	for	SecondaryPlayers.	Each	is	used	to	generate	a	
player,	and	both	players	are	appended	to	the	game_objects	collection.	
	 	

Updating	the	game	
	
	

	
Figure	4:	Sequence	diagram	for	updating	the	game	

	
Figure	4	shows	the	sequence	of	operations	involved	in	the	top-level	game	loop	in	

multiplayer	mode.	Like	the	level	initialization,	the	changes	in	this	sequence	are	mostly	limited	
to	the	Sector,	as	well	as	the	Object	component.	Both	players	have	their	bounds	checked,	but	
player2	is	bound	by	player1	since	the	screen	follows	player1.	Both	players	are	then	updated	
along	with	all	other	game	objects,	and	the	specifics	of	those	updates	are	dealt	with	by	the	
individual	objects.	That	is	why	the	division	of	types	between	MainPlayer	and	SecondaryPlayer	
work	so	well	–	each	one	has	its	own	update	function,	so	they	can	have	different	behaviour.	The	
handlecollisions	function	also	has	to	be	modified	to	handle	(or	ignore)	collisions	between	the	
two	players.	 	

Impacted	Directories	and	Files	
	
control	–	This	directory	will	need	to	be	modified	to	allow	for	the	possibility	of	multiple	different	
inputs	–	eg.	a	keyboard	and	a	controller.	
supertux/Sector.cpp	–	This	is	the	file	that	handles	the	gameobjects,	including	the	player,	so	will	
see	a	lot	of	the	changes.	Every	place	that	handles	the	player	will	now	need	to	handle	both,	or	
specify	only	the	main	player.	
object/Player.cpp	–	This	is	the	base	class	we	will	use	to	create	the	MainPlayer	and	
SecondaryPlayer	classes.	Some	functionality,	which	is	not	wanted	for	the	SecondaryPlayer,	will	
be	removed	from	this	class	into	MainPlayer.	
supertux/object_factory.cpp	–	This	is	the	existing	object	factory.	It	will	be	modified	to	also	
provide	factories	for	MainPlayer	and	SecondaryPlayer.	This	solution	doesn’t	quite	match	the	
Abstract	Factory	design	pattern,	as	there	is	no	abstract	PlayerFactory,	but	it	meshes	better	with	
the	existing	system.	
	
New	files	added	to	the	system	
object/MainPlayer.hpp,	supertux/MainPlayer.cpp	–	This	object	represents	the	main	player,	
which	still	has	full	functionality.	It	extends	Player.	
object/SecondaryPlayer.hpp,	supertux/SecondaryPlayer.cpp	–	This	also	extends	Player,	but	it	
is	a	secondary	player	and	will	lack	some	functionality.	
	

Plans	for	Testing	
There	are	four	aspects	to	our	approach	to	testing:	unit,	integration,	system	level	and	regression	
testing.	
Unit	Testing	

Unit	testing	at	the	code	level	will	be	run	using	a	test	harness	for	newly	written	blocks	of	
code,	ensuring	they	function	as	intended.	Ex.	Check	the	input	handler	can	handle	multiple	new	
inputs	at	the	same	time	by	using	a	test	suite	and	console	logs.		
Integration	Testing	

Integration	testing	will	be	used	to	ensure	that	modifications	within	a	subsystem	does	
not	change	the	overall	functionality	of	the	subsystem	or	cause	any	unexpected	errors.	This	will	
also	be	run	in	a	test	harness.	Ex.	Check	that	the	new	input	handler	can	still	handle	single	inputs	
for	one	player	by	using	gameplay	testing	with	a	single	player	
System	Level	Testing	

System	level	testing	is	to	ensure	that	the	system	as	a	whole	runs	to	specifications	after	
full	integration	of	the	feature.	Including	overall	functionality	and	no	errors.	Ex.	Have	play	testers	
run	the	game	checking	that	both	player	one	and	two	can	play	as	intended,	and	look	for	any	
unexpected	errors.	

Regression	Testing	
Regression	testing	will	be	used	to	ensure	that	any	fatal	errors	found	in	old	builds	or	

during	development	do	not	cause	an	error	in	the	current	version	of	the	program.	Specifics	for	
running	these	tests	will	vary	from	error	to	error.		
	

Potential	Risks	
If	this	enhancement	were	to	be	implemented,	there	are	a	number	of	potential	risks	and	

limitations	that	exist.	The	first	is	that	no	member	of	our	group	has	played	through	the	entirety	
of	SuperTux,	and	there	is	a	possibility	that	our	enhancement	may	change	the	game	in	a	way	
that	would	negatively	impact	gameplay,	perhaps	making	specific	levels	harder	to	beat	with	two	
Tux’s	taking	up	space	on	the	screen.	Additionally,	there	may	be	small	technicalities	within	the	
code	we	do	not	know	of,	which	would	make	implementing	this	a	much	more	arduous	task	than	
we	originally	thought.	

Another	potential	risk	would	be	that	the	second	player	may	have	odd	interactions	with	
power-ups	that	we	did	not	expect.	Ideally,	the	second	player	will	be	able	to	pick	up	power-ups	
and	hit	enemies	just	as	the	first	player	does	with	minimal	changing	of	other	subsystems,	but	
there	is	a	chance	that	the	process	may	be	more	complex	than	we	thought	due	to	particulars	of	
the	code.	This	could	be	addressed,	but	would	simply	take	more	time	to	implement.	

A	risk	that	we	considered	that	is	not	a	problem	would	be	enemy	AI	-	enemies	in	
SuperTux	do	not	have	AI,	and	simply	walk	from	side	to	side.	A	second	Tux	would	not	affect	
them.	
	
	

References	
	
[1]		A.	E.	Hassan,	"Software	Architecture:	Intro	and	Styles,"	October	2017.	[Online].	Available:	

http://cs.queensu.ca/~ahmed/home/teaching/CISC326/F17/slides/CISC326_04_Architectur
eStyles.pdf.	[Accessed	December	2017].	

[2]		SciTools,	"Understand,"	[Online].	Available:	https://scitools.com/.	[Accessed	November	
2017].	

[3]		SuperTux	Development	Team,	"SuperTux	Github	Source	Code,"	[Online].	Available:	
https://github.com/SuperTux/supertux.	[Accessed	November	2017].	

	
	
	
	

