
Concrete	Architecture	Report	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Team	Name:	Pingu	Simulator	
Members:	Ryan	Mahjour,	Wesley	Knowles,	Zack	Harley,	
David	Wesley-James,	Alisha	Foxall,	Michael	Zadra	
Student	Numbers:	10142829,	10149982,	10135795,	
10104425,	10129909	
Due	Date:	November	13th,	2017	
TA:	Dayi	Lin	
Instructor:	Ahmed	E.	Hasan	

	

	
	
	
	

	
	



Abstract	
	

This	report	details	our	derived	concrete	architecture	for	SuperTux,	an	open-source	
multi-platform	Super	Mario-style	game.	It	will	also	compare	this	architecture	with	our	earlier	
conceptual	architecture,	and	provide	an	updated	version	of	the	conceptual	architecture.	The	
concrete	architecture	was	developed	using	a	piece	of	software	called	Understand,	which	helped	
us	trace	and	visualize	dependencies	between	subsystems.	The	concrete	architecture	has	a	
structure	similar	to	the	original	conceptual	architecture,	but	with	many	more	dependencies.	
These	dependencies	shift	the	architectural	style	away	from	layered	and	towards	object-
oriented,	though	we	still	see	remnants	of	the	originally	intended	layered	style.	

	
The	architecture	was	analyzed	using	reflexion	analysis,	which	helped	us	identify	

differences	between	the	two	architectures.	Two	subsystems,	Game	Elements	and	Resource,	
were	analyzed	in	more	detail	using	Understand	and	our	reflexion	analysis.	We	also	explore	two	
sequence	diagrams	in	order	to	better	understand	the	low-level	control	and	data	flows	in	the	
system,	and	detail	the	lessons	that	were	learned	during	this	analysis.	

Derivation	Process	
	

The	derivation	process	for	the	concrete	architecture	of	SuperTux	began	by	updating	our	
conceptual	architecture.	We	compared	our	old	conceptual	architecture	to	the	new	one	and	
created	a	basic	five	level	layered	system:	Interaction	Layer,	Input	Handler,	Resource	Manager,	
Game	Elements,	Add-on	Manager.	After	this,	we	started	to	derive	our	concrete	architecture	by	
following	these	basic	five	subsystems	using	the	Understand	tool.	

	
An	effort	was	made	to	keep	most	files	that	were	grouped	together	in	the	source	code	by	

the	developers,	together	within	our	layers.	We	mapped	each	directory	into	the	layers	we	
thought	it	matched	best,	based	on	our	conceptual	architecture.	We	then	looked	at	the	internal	
dependencies	of	each	layer.	If	any	unexpected	dependencies	were	found	we	would	examine	
the	dependency	and	determine	if	either	our	architecture	diagram	needed	to	be	updated	or	if	
the	file	need	to	be	relocated	to	a	more	suitable	location	within	the	architecture.	This	process	
was	repeated	until	we	came	up	with	an	architecture	that	was	most	logical	with	the	existing	
dependencies.		
	

Concrete	Architecture	
	

Upon	analyzing	the	SuperTux	source	code	folder	and	all	its	component	folders,	the	team	
was	able	to	derive	a	concrete	architecture	for	the	game	by	generating	a	dependency	map	for	
the	source	code	via	the	Understand	Software.	Understand	is	a	customizable	integrated	
development	environment	that	enables	static	code	analysis	through	an	array	of	visuals,	
documentation,	and	metric	tools	[1].	The	group	distributed	the	component	folders	amongst	5	
subsystems	directly	related	to	the	functionality	of	the	source	code	within	the	components.	



These	subsystems	include	the	Interaction	Layer,	Input	Handler,	Resource	Manager,	Game	
Elements,	and	Addon	Manager.	The	generated	dependencies	for	the	concrete	architecture	by	
Understand	can	be	seen	in	Figure	1.	The	high	level	concrete	architecture	diagram	can	be	seen	in	
Figure	2.	
	

	
Figure	1	Understand	Concrete	Architecture	Subsystem	Dependencies	

	



Figure	2	High	Level	Concrete	Architecture	Diagram	

	
It	can	be	seen	in	Figure	2	that	the	architecture	is	much	more	loosely	layered	than	originally	
anticipated,	and	incorporates	more	object-oriented	architecture	style	qualities	due	to	the	
majority	of	its	subsystem	and	component	dependencies	being	bi-directional.	This	
interdependence	within	the	system,	along	with	multiple	hierarchal	unidirectional	dependencies	
still	existing	in	the	architecture,	would	define	the	architecture	to	be	a	loosely-layer	object-
oriented	hybrid	architecture	[2].	
	
The	Interaction	Layer	subsystem	includes	a	single	GUI	component,	and	handles	displaying,	
generating,	and	handling	interactions	with	GUI	related	objects	such	as	menus	or	buttons.	The	
Input	Handler	subsystem	includes	a	single	Control	component,	which	handles	decoding	
keyboard	strokes,	as	well	as	decoding	controller	invocations	should	the	player	be	using	a	
controller	or	joystick.	The	Game	Element	subsystem	includes	the	Editor,	World	Map,	Sprite,	
Trigger,	Bad	Guy,	Supertux,	Scripting,	and	Object	components,	and	handles	the	majority	of	the	
in-game	functions	such	as	controlling	SupterTux,	loading	maps,	initiating	sprites	on	maps,	
loading	user	configurations	and	more	(detailed	explanation	in	subsystem	explanation	section	of	
report).The	Addon	Manager	subsystem	has	a	single	component	called	Addons,	and	handles	
accessing	and	downloading	add-ons	from	the	SuperTux	Add-on	Server	via	network	calls.	It	
provides	these	addons	as	a	service	to	the	game.	The	Resource	Manager	subsystem	provides	
resources	for	playing	audio	files	in-game,	defining	physics	rules,	supporting	graphics	generation	
(such	as	shapes),	and	calculating	any	required	mathematical	functions	required	in-game.	

Subsystems	
	
Interaction	Layer	

The	Interaction	layer	is	a	simple	subsystem	that	handles	drawing	things	to	the	screen.	It	
only	has	one	component	-	the	gui.	This	component	seems	like	it	should	handle	drawing	
everything	to	the	screen,	but	it	doesn’t.	In	another	example	of	poor	structure	by	the	
development	team,	most	of	the	screen	rendering	is	spread	between	other	subsystems	such	as	
the	resource	manager	and	supertux.	
	
Input	Handler	

The	Input	Handler	subsystem	deals	with	decoding	user	interactions	and	passing	them	on	
to	the	appropriate	subsystem.	In	other	words,	the	input	handler	is	the	middleman	between	the	
user	and	the	other	subsystems	in	the	game.	
	

The	input	is	given	from	the	Interaction	Layer.	This	raw	input	is	decoded	via	the	Control	
component.	This	component	is	specifically	built	to	handle	hardware	interactions	from	a	
keyboard	(or	other	input	device)	where	the	inputs	from	the	keys	would	be	mapped	to	their	
specific	values.	These	values	are	then	passed	along	to	the	corresponding	game	subsystem,	
based	on	the	context	of	the	interaction.	
	



Game	Elements	
																The	Game	Elements	subsystem	is	by	far	the	most	complicated	and	important	
subsystem	in	the	architecture.	The	role	of	the	Game	Elements	subsystem	contains	almost	all	
functionality	of	SuperTux.	This	can	be	seen	by	the	vast	number	of	components	within	the	
subsystem,	including	the	Editor,	World	Map,	Sprite,	Trigger,	Bad	Guy,	Supertux,	Scripting,	and	
Object	components.	The	names	of	these	components	describe	their	functionalities,	which	
range	from	the	in-game	maps,	the	sprites	and	characters	in	game,	map	editing,	scripting,	and	
more.	The	Game	Elements	subsystem	is	co-dependent	on	every	single	other	subsystem	in	the	
architecture,	including	the	Interaction	Layer,	Input	Handler,	Resource	Manager,	and	Addon	
Manager.		
	
Add-On	Manager	

The	Add-on	Manager	subsystem	is	one	of	the	multiple	very	simple	subsystems	with	only	
one	component	within	it.	The	role	of	the	Add-on	Manager	is	to	store	downloaded	add-ons,	
communicate	with	the	Add-on	Server,	and	facilitate	downloads	from	the	server.	Add-on	
Manager	depends	on	the	Resource	Manager	layer	and	the	Game	Elements	layer,	and	is	
depended	on	by	the	Interaction	layer	and	again	the	Game	Elements	layer.		
	
Resource	Manager	

The	Resource	Manager	subsystem	is	responsible	for	handling	updates	the	Game	
Elements	layer	that	cause	changes	to	or	require	logic	from	the	Audio,	Physics,	Math,	Video,	and	
Utilities	components.	These	components	are	responsible	for	things	like	sound	effects,	music,	
calculating	Game	Element	trajectories	based	on	speed	and	actions,	and	updating	the	position	of	
Game	Elements.	

	
While	Game	Elements	is	responsible	for	initializing	all	of	the	components	that	enable	

you	to	play	SuperTux,	the	Resource	Manager	is	in	charge	of	updating	the	Game	Elements	to	
make	gameplay	possible.	In	other	words,	Game	Elements	are	the	things	in	the	game,	while	the	
Resource	Manager	components	are	the	actions	being	performed	by	or	on	the	things.	

Styles	and	Design	Patterns	
	
In	our	updated	conceptual	architecture	for	SuperTux,	you	can	see	that	the	one-way	

dependencies	indicate	a	layered	architecture;	although,	the	dependencies	within	the	
subsystem	show	characteristics	of	an	object-oriented	approach.		
	

Our	concrete	architecture	is	similar	to	our	conceptual	architecture	in	that	it	has	a	hybrid	
architecture	with	elements	of	both	layered	and	object-oriented	architecture	styles.	When	
looking	at	the	concrete	architecture	diagram,	you	can	see	the	large	number	of	two	way	
dependencies,	which	is	an	indicator	of	an	object-oriented	architecture.	When	looking	at	the	
organization	of	the	subsystems,	it	can	be	seen	that	there	was	an	attempt	to	follow	a	layered	
approach	in	that	inputs	come	from	the	Interaction	Layer,	are	handled	by	the	Input	Handler,	
then	manipulate	the	other	subsystems.	



	
The	advantages	of	a	layered	architecture	in	SuperTux	are	system	design,	enhancement,	

and	code	reuse.	The	layering	provides	abstraction	for	easier	understanding	of	components.	It	
can	be	seen	that	as	development	progressed,	the	abstraction	has	lessened	and	tighter	coupling	
has	crept	in	which	has	led	to	some	of	the	unexpected	dependencies	that	we	discovered	in	our	
reflexion	analysis.	

	
The	strong	presence	of	object-oriented	architecture	has	several	benefits.	This	

architecture	creates	highly	cohesive	layers	that	with	many	reusable	components	within	them.	
The	object-oriented	also	style	helps	with	the	maintenance	of	the	system.	As	there	are	many	
different	developers	who	have	contributed	and	continue	to	contribute	to	SuperTux,	the	object-
oriented	manner	of	the	architecture	allows	for	interfaces	which	decrease	difficulty	when	
contributing	changes	without	requiring	a	complete	modification	of	a	subsystem;	however,	
developers	must	still	be	mindful	of	the	coupling	between	components	in	the	subsystems	as	any	
alterations	to	the	components	could	cause	unintended	side-effects	on	other	components.	
	

Concrete	and	Conceptual	Architecture	Comparison	
	
Modified	Conceptual	Architecture	
The	modified	conceptual	architecture	for	this	group	can	be	seen	below	in	Figure	3.	It	was	
changed	to	more	closely	resemble	the	concrete	architecture.	Some	notable	changes	between	
the	old	and	new	architecture	include	renaming	the	subsystem	Data	Manager	to	Addon	
Manager,	as	well	as	renaming	multiple	components	in	the	Game	Elements	and	Resource	
Manager.	The	old	conceptual	architecture	can	be	seen	in	the	Appendix	(Figure	10).	
	



	
	

Figure	3	Modified	Conceptual	Architecture	

Low-Level	Subsystem	Comparison	
	
														The	Reflexion	Analysis	is	used	to	measure	and	discuss	the	differences	between	the	
conceptual	architecture	and	concrete	architecture.	This	allows	us	to	discover	the	discrepancies	
in	dependencies	between	the	two	architectures,	and	investigate	the	reasoning	for	those	
differences.	We	will	dive	into	two	subsystems	and	analyze	the	differences	between	the	
conceptual	and	concrete	architectures,	as	well	as	the	divergences	that	exist	between	them.	
	
Resource	Manager	
	



	
Figure	4	Resource	Manager	Differences	

There	were	multiple	differences	between	our	conceptual	and	concrete	architecture	for	
the	Resource	Manager	layer.	In	the	concrete	there	are	five	objects,	whereas	our	conceptual	
only	had	four.	We	originally	had	an	Animation	component,	which	turned	out	not	to	be	there,	
and	we	missed	the	Utilities	and	Math	components.	The	concrete	architecture	had	much	higher	
coupling	than	we	were	anticipating,	which	includes	many	bi-directional	dependencies.	In	our	
conceptual	diagram,	there	were	strictly	uni-directional	dependencies.	There	are	several	unique	
dependencies	to	take	note	of	in	the	concrete	diagram.	Every	component	depends	on	Utilities,	
and	similarly	Utilities	depends	on	almost	every	other	component,	thus	making	it	the	core	of	the	
Resource	Manager	subsystem.	The	Math	component	has	no	dependencies,	yet	three	other	
components	depend	on	it,	also	making	it	take	an	important	role	in	the	subsystem.	Finally,	
unintuitively	the	Physics	and	Math	components	have	no	dependency	between	them.	Within	
resource	manager,	Audio	depends	on	Math	to	invoke	its	vector	methods,	in	order	to	process	
the	sound_manager	procedure.	It’s	not	clear	why	a	mathematical	vector	would	be	required	in	
order	to	support	the	sound_manager.	Our	conceptual	architecture	did	not	have	this	
dependency,	as	it	is	not	something	that	is	intuitive	in	the	architecture.	Strange	dependencies	
like	these	are	the	reason	for	most	of	the	divergences	between	the	conceptual	and	concrete	
architectures.	

	



Figure	5	Understand	Dependency	Graph	for	Resource	Manager	

	
Game	Elements
	

	
Figure	6	Game	Element	Subsystem	Differences	

With	a	quick	glance	at	the	diagram	with	our	conceptual	and	concrete	architecture	for	
the	Game	Elements	subsystem	one	can	easily	see	the	two	are	considerably	different.	The	only	
component	that	is	in	both	architectures	is	the	Sprite	component,	yet	even	then	we	did	not	
expect	the	dependencies	that	showed.	We	hypothesized	that	only	the	Maps	component	would	
depend	on	Sprites,	instead	there	are	a	total	of	six	components	that	depend	on	Sprites	and	it	
depends	on	the	Supertux	component.	The	Supertux	component	is	very	similar	to	a	God	class,	as	
it	does	so	much	(it	has	seven	bi-directional	dependencies!).	The	Maps	component,	which	as	it	is	



in	our	conceptual	architecture	is	used	to	store	each	individual	game	level,	is	actually	stored	
within	the	Supertux	component.	There	are	multiple	other	components	in	this	subsystem	that	
we	found	to	be	confusingly	named.	The	Trigger,	Object,	and	Scripting	components	are	not	
named	in	such	a	way	as	to	make	their	purpose	clear.	Specifically,	upon	closer	inspection	inside	
the	Scripting	component	we	found	that	it	seems	to	be	a	place	that	random	functionality	was	
put,	creating	unforeseen	dependencies	between	it	and	other	components.	An	unexpected	
dependency	here	can	be	seen	between	Scripting	and	Object,	caused	by	strange	organization	of	
code.	Within	Object,	there	is	level_time	which	represents	the	user’s	time	to	complete	a	level.	
The	level_time	object	includes	the	squirrel_util	file,	which	is	within	the	Scripting	object.	This	
squirrel_util	file	handles	storing	and	persisting	user	values,	such	as	their	level_time	for	
respective	maps.	Again,	our	conceptual	architecture	did	not	have	this	dependency,	as	it	is	not	
something	that	is	intuitive	in	the	architecture.	There	are	many	dependencies	that	are	as	
unintuitive	as	the	above	example,	and	are	the	reason	for	most	of	the	divergences	between	the	
conceptual	and	concrete	architectures.	

	
Figure	7	Understand	Dependency	Graph	for	Game	Elements	Components	

Sequence	Diagram	
	

To	gain	insight	into	the	concrete	architecture,	we	traced	its	the	execution	through	two	
use	cases:	story-mode	map	selection	and	exiting	a	level.	We	used	the	SuperTux	source	code	[3],	
exploring	the	different	classes	to	find	how	data	and	control	flowed	throughout	the	scenarios.	
Each	use	case	is	shown	below	as	a	sequence	diagram	accompanied	by	an	explanation.		

	



 
Figure	8	Sequence	Diagram	for	selecting	a	level	on	World	Map 

	



	
Figure	8	shows	a	sequence	diagram	for	selecting	a	level	on	a	world	map.	It	mostly	

involves	the	Supertux	and	Worldmap	components,	with	Audio	being	used	to	play	the	map’s	
music.	The	flow	of	control	in	Supertux	is	a	bit	strange,	so	I	have	chosen	to	focus	on	the	parts	
relevant	to	this	scenario.	Within	the	Supertux	component	is	a	class	called	the	ScreenManager,	
which	keeps	track	of	which	screen	the	game	is	on.	It	also	runs	the	game	loop,	which	we	see	
above.	The	actual	condition	of	the	loop	is	that	there	is	still	a	screen	to	show,	but	this	scenario	
will	only	continue	as	long	as	the	WorldMap	is	the	current	screen.	Thus,	the	push_screen()	call	
from	WorldMap	to	Supertux	will	change	the	top	screen	to	the	selected	level,	ending	the	
scenario.	
	

Another	thing	to	point	out	is	that	there	is	no	control	here	for	moving	Tux	around	the	
map.	This	system	mostly	has	components	handle	their	own	inputs,	so	WorldMap	maintains	a	
Tux	object	which	manages	its	own	direction	and	position	on	the	map.		



 
	

Figure	9	Sequence	Diagram	for	user	exiting	level	

Figure	9	shows	the	sequence	of	steps	when	a	user	exits	a	level.	It	starts	when	the	
GameSession	recognizes	an	escape	input.	It	then	checks	that	the	player	is	not	dying,	because	if	
they	are	it	won’t	let	them	pause	and	avoid	the	death.	It	then	toggles	the	pause	state,	which	
stops	the	screen	from	running,	stops	audio,	and	pushes	a	game_menu.	



Here	we	see	another	major	architectural	issue.	The	Gui	component	has	a	class	called	
MenuManager	which	tracks	the	MenuStack	and	handles	menu	inputs.	However,	the	different	
kinds	of	menus	live	within	Supertux,	so	control	is	passed	to	the	Gui	then	right	back	to	Supertux.	
If	Supertux	gets	a	menu_action	that	tells	it	to	abort	the	level	it	clears	the	menu,	pops	the	
current	level	from	the	screen	stack,	resets	local	variables	for	bonus	points,	coins	etc,	and	stops	
the	music.	Control	is	then	returned	to	whatever	screen	was	below	the	level	in	the	stack,	which	
is	probably	the	WorldMap.	

Concurrency	
	

SuperTux	is	multi-threaded.	While	the	game	is	running,	processes	such	as	audio	and	
graphics	are	executed	concurrently.	These	processes	need	to	be	processed	at	the	same	time	to	
avoid	audio	and	visual	lags.	Physics	also	acts	in	parallel	with	the	SuperTux	object.	For	example,	
the	physics	needs	to	know	how	fast	SuperTux	is	moving	to	be	able	to	calculate	the	location	of	
where	Supertux	will	land	when	it	jumps.	

Lessons	Learned	
	
	 Throughout	the	development	of	the	concrete	architecture,	several	lessons	were	
learned.	First,	the	concrete	architecture	had	much	higher	coupling	than	we	would	have	
expected,	especially	compared	to	our	conceptual	architecture.	We	also	learned	that	software	
design	requires	some	compromises	and	planning.	The	high	coupling	associated	with	SuperTux	
was	likely	caused	by	poor	planning.	Within	our	group,	we	learned	that	it	is	important	to	state	
the	architecture	beforehand,	to	ensure	all	group	members	are	on	the	same	page.	Using	
Understand,	we	discovered	that	it	is	a	very	powerful	tool	to	understand	the	code	base,	but	it	
has	a	steep	learning	curve.	Finally,	we	determined	that	it	is	hard	to	derive	an	architecture	by	
simply	observing	how	a	game	runs	without	looking	at	source	code.	

References	
	

[1]		SciTools,	"Understand,"	[Online].	Available:	https://scitools.com/.	[Accessed	November	2017].	
[2]		A.	E.	Hassan,	"Software	Architecture:	Intro	and	Styles,"	October	2017.	[Online].	Available:	

http://cs.queensu.ca/~ahmed/home/teaching/CISC326/F17/slides/CISC326_04_ArchitectureStyles.pdf.	
[Accessed	November	2017].	

[3]		SuperTux	Development	Team,	"SuperTux	Github	Source	Code,"	[Online].	Available:	
https://github.com/SuperTux/supertux.	[Accessed	November	2017].	
	
	
	
	



Appendix	

	
	

Figure	10	Old	Conceptual	Architecture	

	

	


